
Aligning Proteins: Previously we aligned sequences using a +1 match -1 mismatch -1 gap 
scoring scheme. In practice, this match/mismatch scoring scheme is only used for aligning 
nucleotides. For aligning proteins, we use scoring matrices like BLOSUM62 to take into account 
that alignment often preserves chemical properties.

Sequence similarity: To determine protein similarity we simply align two proteins and sum up the 
amino acid scores. In principle, we could determine similarity scores from local or global 
alignments. In practice, we use local alignment only. One reason for this is that there is no 
established procedure for determining global alignment significance.

Alignment scores: What does an alignment score mean? Is a score of  30 good? Does 30 mean 
the proteins are homologous or functionally related? What if  the scores in the matrix were 
scaled by 10 vs 5? Is a score of 100 necessarily better than 50?

Significance: In typical frequentist statistics, one accepts or rejects an hypothesis based on 
some random model. For local alignments, we use the same idea. Given an alignment score, 
we would like to know  how often such a score would be expected to occur at random. If the 
score is easily attained at random, then it is probably not very significant.

Karlin-Altschul statistics: Local alignment statistics were formalized by 
Karlin & Altschul using information theoretic methods. Given certain 
assumptions (see box) the K-A equation (equation 7) tells you how  often 
such a score (or higher) is expected at random. For some intuition in this, 
imagine comparing two books to see if they have similar sentences. If the 
books are very short, you don't expect may similar sentences. 
Conversely, if the books were gigantic, you would expect to find many 
more similar sentences. The product MN is called the search space, and 
the number of expected alignments varies linearly with the size of the space. Now  imagine that 
you have a threshold score for what you accept as similar sentences. If  you ask for a higher 
score, you will find fewer sentences. The K-A equation shows that this is an inverse exponential 
relationship. In other words, a small change increase in score can lead to a large reduction in 
the number of alignments expected at random. The fact that λ is in the exponent indicates that 
E is also highly dependent on its value. λ is effectively the inverse of the scaling factor used to 
create the matrix (but not exactly due to rounding). In other words, λ turns the matrix score  into 
a log-odds score. Now  we can begin to answer the questions we previously posed. Is a score of 
30 good? It depends on the search space. In a large search space, 30 may be expected at 
random, but it might be highly significant in a small search space. Is a score of 100 better than 
50? If the only difference is the scaling factor, then the significance is the same because λ will 
normalize them to the same bit score.

K-A issues: Let's take a closer look at the K-A 
assumptions. #1 and #2 are true of  any scoring 
matrix derived from multiple alignments. But we 
can also make up an arbitrary scoring scheme 
such as our original +1/-1 match/mismatch 
scheme. Is this legal? What would happen if  the scheme was +2/0? What about -1/-2? What 
about +10/-1? When might +1/-1 be illegal? #3 is only a problem when sequences are very 
short. To deal with this problem, people consider the search space to be smaller in each 
dimension by log(kMN)/H, which is the length of the expected random alignment. #4 states that 
letters are independent and identically distributed. In other words, the probability of finding a 
sequence such as AAA is simply the product of  finding A cubed. Does this make sense? Not 
really considering that genomes and proteins contain a lot of  repeats. #5 disallows gaps. But we 
know S-W alignments can contain gaps. We will return to the gap problem in a bit.
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Karlin-Altschul Assumptions
1.A positive score must be possible
2.Expected score of matrix must be negative
3.Sequences are infinitely long
4.Letters are independent and identically distributed
5.Alignments do not contain gaps

Equation 7

€ 

E = kMNe−λS
E: number of alignments
k: a constant
M: size of sequence 1
N: size of sequence 2
e: 2.7182818...
λ: scaling factor
S: score of alignment



Lambda revisited: In order to compute E, we need 
λ for our scoring scheme. We might know  this 
value ahead of time if we created our own scoring 
matrix, but if someone else created it, or we used 
a system like +1/-1, we need to be able to derive λ 
somehow. λ cannot be solved for algebraically, but 
we can estimate its value to arbitrary precision.

It turns out that our old +1/-1 scoring system 
implies a pairing frequency of about 75% given 
that the 4 nucleotides have 25% frequency. If we 
had started with nucleotide alignments containing 
about 75% identity, and the marginal nucleotide 
frequencies were all 25%, we would have ended 
up with a +1/-1 scoring system. +1/-1 does not 
imply 75% identity in proteins however.

Gaps revisited: So what do we do about gaps? 
Gaps make it easier to align two sequences. 
Therefore, gaps effectively reduce H. To account 
for this in the K-A equation, we can simply 
decrease λ, and this will decrease the bit score of 
the alignment and therefore increase the E value. 
How  much we reduce λ depends on the specific 
match, mismatch, and gap penalties. It is not possible to 
compute these adjustments algebraically, so they are 
computed via simulation.

BLAST: One of  the most famous and popular 
bioinformatics applications is BLAST (Basic Local 
Alignment Search Tool). This combines sequence 
alignment and statistical evaluation in a single, efficient 
program. BLAST is similar to S-W in principle: both are 
local alignment algorithms. But BLAST is much faster 
because it does not explore the entire search space. 
There are 3 steps to the BLAST algorithm: (1) seeding (2) extension (3) evaluation. In the 
seeding phase, regions containing identical (or highly similar)  strings are identified. These 
points in the space are expected to contain the good local alignments. In the extension phase, 
each seed undergoes a S-W-like alignment, but the extension stops if  the alignment quality 
degrades too much. In the evaluation phase, the alignment is subjected to the K-A equation to 
determine how  often the alignment is expected by chance. If the E value is less than some user-
defined threshold, then the alignment is reported.
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The usual equation for the score 
of any amino acid pair.
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λ is the inverse of the scaling 
factor used when the matrix was 
scaled and rounded off. When 
scores are in bits, λ = 1.
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eλSij =
Qij

PiPj
Exponentiate each side of the 
equation.
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Qij = PiPje
λSij

This is the most important part. 
It shows that an observed 
pairing frequency is implied 
given the marginal compositions 
and a scoring scheme.
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Qij =1∑∑ By definition all observed pairing 
frequencies sum to 1.0
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= PiPje
λSij∑∑

We can solve for λ by making 
refined guesses at its value. If 
our guess is too high, the sum 
will be > 1. If it is too low, the 
sum will be < 1.

Program Database Query Example

BLASTN DNA DNA Align mRNA to genome

BLASTP AA AA Search for proteins related to ____

BLASTX AA DNA Find coding exons in a BAC

TBLASTN DNA AA Search for transcripts similar to ____

TBLASTX DNA DNA Find orthologous coding exons

seeds

extension

evaluation


