
What is information?: We all have an intuitive idea about what information is. If we ask a kid
what their favorite food is and they say 'chocolate' or 'ice cream', it's not very informative. We
expected an answer like that. If they say 'broccoli and cheese'
we would probably remember that weird kid. Information is a
degree of surprise. The more surprising the message, the
informative the message. The mathematical definition of
information assumes there is an information source that emits
messages. The information of any particular message is given in
equation 1. Information is almost always calculated in base 2
and therefore given the unit bits (binary digits). Sometimes you may see nats, which
corresponds to the log base e. For our purposes, we will usually use base 2 for log, and bits will
be the units. As an example, let's say that the answer to an average kid's favorite food is
'chocolate' 50% of the time. The information of 'chocolate' is
simply the -log(0.5) or 1.0 bit. Similarly, if the probability of 'ice
cream' is 0.25, this is 2.0 bits. An easy way to think about this is
as powers of two: 0.5 is 2-1 and 0.25 is 2-2. A message occurring
~1/1000 times has 10 bits of information (210 = 1024).

What does this have to do with genomics?: In order to determine if two sequences are related to
each other, we need (a) some way to align sequences (b) some way to determine if the
alignments are significant. It is common to use information theory to determine the significance.

Information content: Generally, we are more interested in the information content of a source
rather than the information of any particular message. A rich source of information provides you
with a lot of surprise on average. Information content is simply the average information per
message (equation 2). Information content is also called entropy or Shannon's Entropy
because it was invented by Claude Shannon. An information source can be thought of as a

frequency distribution (histogram). Some histograms are more
predictable than others. For example, consider two coins, one is fair,
the other a trick coin. The fair coin comes up heads 50% of the time.
The trick coin is heads 90% of the time. Which one is more
predictable? As an information source, which one has higher
information content? What about a fair vs loaded die? What about
DNA? What about DNA with highly biased composition? Try working
some examples.

Relative entropy: Let's say you have nucleotide frequencies
from several different genomes and you want to know which
ones are the most similar to each other. How might you
compare them? If you consider the sequences to be
information sources and nucleotides to be messages, then
you can use relative entropy to measure the similarity. This is
also called Kullback-Leibler distance (equation 3). Strictly
speaking, D(P||Q) is not always D(Q||P) but it's usually close.
Note that if P or Q contains any zero probability values, you
may get numerical errors (divide by zero or log zero).

Codon bias: In the genetic code, some triplets code for the same amino acid, but not all codons
are used with the same frequency. In different genomes the biased codons may not be the
same. Codon bias probably exists because of translational efficiency. Not all tRNAs are
expressed at the same level. As a result, highly expressed genes are optimized to use abundant
tRNAs so they don't have to "wait" for rare tRNAs. Given that the codon bias of an organism is a
kind of signature, if you found a gene with very different codon usage, you might expect

Sequence Analysis Primer Korf

1/11

Equation 1

€

I(m) = − log2 P(m)
I: information
m: message
P(m): probability of message

Equation 2

€

H = − Pi log2∑ Pi
H: information content
Pi: probability of message i

Most programming languages
have a log function that returns
values in log base e. To convert
to base 2, simply divide by log(2).

Equation 3

€

D(P ||Q) = Pi∑ log2
Pi
Qi

⎛

⎝
⎜

⎞

⎠
⎟

D: distance
P: some frequency distribution
Q: other frequency distribution
Pi: probability of message i in P
Qi: probability of message i in Q

horizontal gene transfer. You could use K-L distance to find outliers in a genome. In such an
experiment, the source is the codon usage, and each message is a triplet.

Amino acid similarity: One of the most fundamental
concepts in biology is that similarity is an indicator of
common evolutionary history. Many phylogenetic trees
are based on proteins. Before we can compare
proteins, we need to be able to compare amino acids.
How similar are any two amino acids? One could look
at size, shape, charge, hydrophobicity, functional
groups, etc. You can imagine a lot of different ways.
The image at the right summarizes some of these
ideas. Another way to determine similarity is by asking
how often can one amino acid substitute for another in a protein? How would you design such
an experiment? Replace an amino acid with another and perform some kind of assay for protein
function? That would be great but it's a lot of work. Luckily, these experiments have already
been performed billions and billions of times... in nature (evolution).

Margaret Dayhoff: The 'mother of bioinformatics' aligned orthologous proteins by hand and
published the multiple alignments in the Atlas of Protein Sequence and Structure. She and her
colleagues produced multiple volumes of the atlas. Using known phylogenetic relationships, she
was able to observe the rate at which one amino acid changes to another, which is called the
substitution frequency. These changes are not symmetrical. That is, changing from G -> V ≠
V -> G. This is the truth, but we generally ignore this and average them. Today, there are too
many proteins for a print publication. Databases like SwissProt, GenBank, and TrEMBL take
place of the Atlas. Similarly, aligning all the sequences by hand would not be possible. There are
several computer programs for creating multiple alignments (ClustalW, Dialign, T-Coffee).

The score for pairing amino acids is shown in Equation 4. The score, S, for any two amino
acids i and j is the log of the observed substitution frequency (Qij) divided by the expected
substitution frequency. The observed frequency
comes from counting occurrences in multiple
alignments. The expected frequency is simply the
chance that any two amino acids would be selected
at random, so this is the
product of the probabilities of
the individual amino acid
frequencies Pi and Pj.

Sequence Analysis Primer Korf

2/11

Equation 4

€

Sij = log
Qij

PiPj

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

Amino acid score examples
Given: PM = 0.02, PL = 0.1, PE = 0.04
 QML = 0.004, QME = 0.001, QLE = 0.002
Calculate:
 SML, SLE, SME

SML = log(0.004 / (0.02)(0.1)) = 1.0 bit
SLE = log(0.002 / (0.04)(0.1)) = -1.0 bit
SME = log(0.001 / (0.02)(0.04)) = 0.32 bits

Scoring matrices: A scoring matrix (at right) is
simply a table of all pairwise scores. The matrix
produced by Dayhoff is called the PAM matrix (a
rearrangement of acceptable point mutations). If
you look at the scores in a matrix, you will note
that they are all integers. What happened to
values like 0.32 bits? They were scaled and
rounded off. For example, one might scale 0.32
by a factor of 2 and then round off 0.64 to +1.
Why? Historically, computers were slow and
had little memory, so people used integers.
There is no reason to do this now (floating point
calculations are actually faster than integer
today), but the practice of using integers for
scoring matrices continues. Once the scores in
a matrix are scaled and rounded off, the units
are no longer bits.

Expected score: An important property of a matrix is its expected score
(equation 5). To calculate this, one sums up the score contribution of
each pairing (the contribution depends on the score and the expected
frequencies of the individual amino acids). In general, the expected
score of a matrix is negative.

Relative entropy: The most important property of a scoring matrix is
its relative entropy (equation 6). This is the bits per aligned pair of
amino acids. To gain some intuition for this, imagine if the observed
pairing (Qij) is equal to expected (PiPj). In this case, H = 0. That is,
the scoring system reflects the random expectation. This is not so
different from K-L distance if you compare to identical histograms.
The distance is zero. H is maximum when what is observed is very different from what is
expected. When does this happen? Continuing from the previous example where PM = 0.04 and
PL = 0.1, the expectation is 0.004. If M is rarely observed to align with L, then QML will be
different from PMPL. If you create a scoring matrix from proteins that are all very similar to each
other, there will be few substitutions, and Qij will be very different from PiPj. In biological terms, a
scoring matrix from highly conserved orthologous proteins will result in a matrix with high H
whereas a matrix derived from less similar proteins will have low H. If the alignments are
random sequences with no real relationship, H will be zero. Choosing the correct matrix is
important. If you are looking for distant similarities, you will not find them with a matrix with high
H. On the other hand, if you are looking for very short sequences, H must be high to be
significant (more on this later).

BLOSUM matrices: Henikoff & Henikoff created their scoring matrices automatically. They did
not restrict themselves to proteins with known phylogenetic relationships. To calculate the
various Qij values, they assumed all pairings were possible. For any column in a multiple
alignment, the counts of different amino acids is NiNj and the counts for the same amino acid is
N choose 2. N! / 2! (N - 2)!

Imperfect spelling: Have you ever wondered how a spelling checker works? How does it know if
the word is misspelled, and how does it suggest correct spellings? This area of computer
science is called inexact (approximate, fuzzy) string matching. The bioinformatics equivalent is
called sequence alignment. In bioinformatics, we often treat nucleotides and proteins as strings

Sequence Analysis Primer Korf

3/11

BLOSUM62 Scoring Matrix
 A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1

Equation 5

€

Exp = PiPjSij
j
∑

i
∑

Equation 6

€

H = Qij log
Qij

PiPj

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

j
∑

i
∑

http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Sequence_alignment

of letters. Even though we know that biological sequences are 3-dimensional entities with
physical and chemical properties, it's much easier to process them as 1-dimensional strings.
Sequence alignment is used for a variety of bioinformatics tasks. Sometimes we take have it for
granted that we can assemble a genome and identify repeats. There are also many other tasks
that require sequence comparisons such as determining the function of newly discovered
proteins, gene finding, constructing phylogenetic trees, and designing oligos. So how do we
know if two sequences are similar? There are two fundamental concepts: (1) creating
alignments (2) determining if alignments are significant. We will first discuss how to create
alignments and then consider their significance.

Dot plots: A simple way to look at the relationship between two sequences is
a dot plot (or dot matrix). This is a 2D matrix with a sequence along each
axis. Each point in the matrix corresponds to a specific letter in each
sequence. Regions of similarity appear as diagonals in the matrix. Rather
than draw dots, it easier to draw lines showing just the similar regions. In the
8 graphs shown: (a) an alignment showing a regional similarity between two

sequences (b) a section in the middle
does not align as well (c, d) the similar regions are
separated by a gap (e) a sequence aligned to itself (f)
sequence 1 has a duplication (g) a sequence with a repeat
aligned to itself (h) a sequence with an SSR aligned to itself.
Note that in (c, d) there is either an insertion in one
sequence or a deletion in the other. Gaps are therefore often
called indels.

Pairwise alignment: There are two "flavors" of pairwise alignment: global and local.
In global alignment, the goal is to align every letter of the two sequences. Consider
aligning the letters in these two sequences: (1) ACTTTGA (2) TTT. One possible
alignment between these is shown as "align 1". Every letter in each sequence is
either aligned to another letter or a gap (-) symbol. If the sequences are identical, it is
typical to use a | character between the sequences to indicate this. Another common
convention is to use the letter. Whenever sequences have unequal lengths, there will
be gaps. The gaps can occur anywhere. For example, an alignment between (1) and
another sequence (3) ACTGA is shown as "align 2". In local alignment, only the
best region is kept. "Align 3" shows two possible local alignments of sequences
(1) and (3). Both are equally good. There are also a large number of really poor
alignments one could make.

Alignment scoring: In order to compare alignments to each other, we can give them a score. A
simple scoring scheme is to give every matching letter a score of +1 and every mismatch or gap
a score of -1. Under such a scheme, the scores for alignments 1-3 are: -1, 3, and 3.

Needleman-Wunsch algorithm: To find the best global alignment one uses the N-W algorithm (or
some variant of it). The number of possible alignments between two sequences is huge. You
can put gaps in either sequence anywhere you like (but not across from each other). A naive
alignment algorithm would enumerate all possible gaps and then choose the alignment with the
best score. Even with short sequences this quickly becomes unwieldy and in biological
sequences, which can be huge in the case of chromosomes, the number of alignments
becomes astronomical. N-W uses dynamic programming (DP) to efficiently find a single highest
scoring alignment. There may be more than one alignment with the maximum score, but the
algorithm usually only returns one of these. To begin the N-W algorithm, the sequences are
entered into a matrix (like a dot plot) with an extra 1st column and row. There are 3 steps to the
algorithm: (1) initialization (2) fill (3) trace back. In the initialization, the first row and column are
set to gap scores. In the fill, a recursive operation is used to update the maximum score of every

Sequence Analysis Primer Korf

4/11

sequence 1
C A C G A T C

A
C
G
T
T
C
A

a b c d

e f g h

Align 1
ACTTTGA
 |||
--TTT--

Align 2
ACTTTGA
|| | ||
AC-T-GA

Align 3
ACT TGA
||| or |||
ACT TGA

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Dynamic_programming

cell. In the trace back, the alignment is recovered by
following the maximum alignment from the bottom right
of the matrix through the top left.

Let's take a close look at the fill. In order to fill a cell,
you must have 3 neighboring cells located above, to
the left, and diagonally above and left. At the beginning,
there is only one cell that can be filled. This is the one
that aligns the first A and A in the example. To fill this
cell, you must determine the maximum score of 3
possible directions (diagonal, up, and left).

Diagonal score = score of diagonal cell + match or mismatch score (either +1 or -1)
Left score = score of left cell + gap score (-1)
Up score = score of up cell + gap score (-1)

When you move horizontally or vertically, you do not consider wether the nucleotides match or
not because this operation introduces a gap character. The power of DP is that we do this same
operation of looking at 3 possible alignments at every position in the matrix. But we are not
enumerating all possible alignments, we are always extending the previous maximum
alignment.

Smith-Waterman algorithm: To find the maximum
scoring local alignment, you can use the exact same
procedure as N-W except that (a) any score below 0 is
given the score of 0. At the end, the trace back is
performed from the highest score in the matrix rather
than the last cell of the matrix.

Scoring system: Different match, mismatch, and gap
scores will result in different alignments. Try the same
sequences with a gap score of -2 and you will get a
slightly different alignment.

Computational considerations: The N-W and S-W algorithms as described are not used for
aligning long sequences. One reason is that the amount of memory to hold the DP matrix
becomes excessive. Each cell in the matrix must hold a score and a directional pointer. This
might be 5 bytes of RAM per cell. In order to align two BACs of 100 kb each, you would need
about 50 GB of RAM (1e5 x 1e5 x 5). What if you wanted to align some genomes? No computer
on the planet has enough RAM. Another reason not to use N-W and S-W is that most of the the
space in a DP matrix has a low score. Why align everything rather than just the best parts?
Sequence alignment is one of the oldest areas of bioinformatics research, but it is still very
active. There are a lot of clever programs that perform alignments very quickly without using
much memory. At the root of all these programs is some variant of the S-W algorithm.

Aligning Proteins: Previously we aligned sequences using a +1 match -1 mismatch -1 gap
scoring scheme. In practice, this match/mismatch scoring scheme is only used for aligning
nucleotides. For aligning proteins, we use scoring matrices like BLOSUM62 to take into account
that alignment often preserves chemical properties.

Sequence similarity: To determine protein similarity we simply align two proteins and sum up the
amino acid scores. In principle, we could determine similarity scores from local or global
alignments. In practice, we use local alignment only. One reason for this is that there is no
established procedure for determining global alignment significance.

Sequence Analysis Primer Korf

5/11

http://en.wikipedia.org/wiki/Smith-Waterman_algorithm
http://en.wikipedia.org/wiki/Smith-Waterman_algorithm

Alignment scores: What does an alignment score mean? Is a score of 30 good? Does 30 mean
the proteins are homologous or functionally related? What if the scores in the matrix were
scaled by 10 vs 5? Is a score of 100 necessarily better than 50?

Significance: In typical frequentist statistics, one accepts or rejects an hypothesis based on
some random model. For local alignments, we use the same idea. Given an alignment score,
we would like to know how often such a score would be expected to occur at random. If the
score is easily attained at random, then it is probably not very significant.

Karlin-Altschul statistics: Local alignment statistics were formalized by
Karlin & Altschul using information theoretic methods. Given certain
assumptions (see box) the K-A equation (equation 7) tells you how often
such a score (or higher) is expected at random. For some intuition in this,
imagine comparing two books to see if they have similar sentences. If the
books are very short, you don't expect may similar sentences.
Conversely, if the books were gigantic, you would expect to find many
more similar sentences. The product MN is called the search space, and
the number of expected alignments varies linearly with the size of the
space. Now imagine that you have a threshold score for what you accept
as similar sentences. If you ask for a higher score, you will find fewer sentences. The K-A
equation shows that this is an inverse exponential relationship. In other words, a small change
increase in score can lead to a large reduction in the number of alignments expected at random.
The fact that λ is in the exponent indicates that E is also highly dependent on its value. λ is
effectively the inverse of the scaling factor used to create the matrix (but not exactly due to
rounding). In other words, λ turns the matrix score into a log-odds score. Now we can begin to
answer the questions we previously posed. Is a score of 30 good? It depends on the search
space. In a large search space, 30 may be expected at random, but it might be highly significant
in a small search space. Is a score of 100 better than 50? If the only difference is the scaling
factor, then the significance is the same because λ will normalize them to the same bit score.

K-A issues: Let's take a look at the K-A assumptions. #1 and #2 are true of any scoring matrix
derived from multiple alignments. But we can also make up an arbitrary scoring scheme such as
our original +1/-1 match/mismatch scheme. Is this legal? What would happen if the scheme was
+2/0? What about -1/-2? What about +10/-1?
When might +1/-1 be illegal? #3 is only a problem
when sequences are very short. To deal with this
problem, people consider the search space to be
smaller in each dimension by log(kMN)/H, which is
the length of the expected random alignment. #4
states that letters are independent and identically
distributed. In other words, the probability of finding a sequence such as AAA is simply the
product of finding A cubed. Does this make sense? Not really considering that genomes and
proteins contain a lot of repeats. #5 disallows gaps. But we know S-W alignments can contain
gaps. We will return to the gap problem in a bit.

Lambda revisited: In order to compute E, we need λ for our scoring scheme. We might know
this value ahead of time if we created our own scoring matrix, but if someone else created it, or
we used a system like +1/-1, we need to be able to derive λ somehow. λ cannot be solved for
algebraically, but we can estimate its value to arbitrary precision.

It turns out that our old +1/-1 scoring system implies a pairing frequency of about 75% given that
the 4 nucleotides have 25% frequency. If we had started with nucleotide alignments containing

Sequence Analysis Primer Korf

6/11

Equation 7

€

E = kMNe−λS
E: number of alignments
k: a constant
M: size of sequence 1
N: size of sequence 2
e: 2.7182818...
λ: scaling factor
S: score of alignment

Karlin-Altschul Assumptions
1.A positive score must be possible
2.Expected score of matrix must be negative
3.Sequences are infinitely long
4.Letters are independent and identically distributed
5.Alignments do not contain gaps

about 75% identity, and the marginal nucleotide
frequencies were all 25%, we would have ended
up with a +1/-1 scoring system. +1/-1 does not
imply 75% identity in proteins however.

Gaps revisited: So what do we do about gaps?
Gaps make it easier to align two sequences.
Therefore, gaps effectively reduce H. To account
for this in the K-A equation, we can simply
decrease λ, and this will decrease the bit score of
the alignment and therefore increase the E value.
How much we reduce λ depends on the specific
match, mismatch, and gap penalties. It is not
possible to compute these adjustments
algebraically, so they are computed via simulation
(e.g. do billions of random alignments with a
variety of scoring systems to compare how
gapped and ungapped alignments are related).

BLAST: One of the most famous and popular
bioinformatics applications is BLAST (Basic Local
Alignment Search Tool). This combines sequence
alignment and statistical evaluation in a single,
efficient program. BLAST is similar to S-W in
principle: both are local alignment algorithms. But
BLAST is much faster because it does not explore the
entire search space. There are 3 steps to the BLAST
algorithm: (1) seeding (2) extension (3) evaluation. In
the seeding phase, regions containing identical (or
highly similar) strings are identified. These points in the
space are expected to contain the good local
alignments. In the extension phase, each seed
undergoes a S-W-like alignment, but the extension
stops if the alignment quality degrades too much. In the
evaluation phase, the alignment is subjected to the K-A
equation to determine how often the alignment is
expected by chance. If the E value is less than some
user-defined threshold, then the alignment is reported.

Sequence Analysis Primer Korf

7/11

seeds

extension

evaluation

Program Database Query Example

BLASTN DNA DNA Align mRNA to genome

BLASTP AA AA Search for proteins related to ____

BLASTX AA DNA Find coding exons in a BAC

TBLASTN DNA AA Search for transcripts similar to ____

TBLASTX DNA DNA Find orthologous coding exons

€

Sij = log
Qij

PiPj

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

The usual equation for the score
of any amino acid pair.

€

λSij = log
Qij

PiPj

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

λ is the inverse of the scaling
factor used when the matrix was
scaled and rounded off. When
scores are in bits, λ = 1.

€

eλSij =
Qij

PiPj
Exponentiate each side of the
equation.

€

Qij = PiPje
λSij

This is the most important part.
It shows that an observed
pairing frequency is implied
given the marginal compositions
and a scoring scheme.

€

Qij =1∑∑ By definition all observed pairing
frequencies sum to 1.0

€

= PiPje
λSij∑∑

We can solve for λ by making
refined guesses at its value. If
our guess is too high, the sum
will be > 1. If it is too low, the
sum will be < 1.

From extrinsic to intrinsic models: Sequence alignment assumes all letters are independent of
one another. This is useful if you are looking for conservation in general, but what if you are
interested in a particular type of sequence, such as a promoter, or a protein domain? For this
kind of question, we can need more specific models.

Composition: A simple yet useful attribute of a genome is
it's base composition. For example, A. thaliana is AT-rich
and D. radiodurans is GC-rich. The composition is generally
not uniform, however. For example, A. thaliana exons are
more GC-rich than introns. When we describe a sequence
by its composition, we are implicitly creating a sequence
model where every nucleotide is independent of every other nucleotide. We would therefore
conclude that the probability of seeing AAAAAA is simply the probability of A to the 6th power.
However, this is not the case in real sequences. Low-complexity sequences occur much more
frequently than expected by chance. While composition is a useful attribute, it ignores the
context of each nucleotide.

Context: The context of a letter is defined by the letters closest to it. Before we consider the
context of biological sequences, let's think about a more familiar case: language. In English, Q
is almost always preceded by a vowel (or nothing) and followed by U. A simple compositional
description of English would assume that some words contain QQ, but we know this to be false.
Context matters. Context is also important in biological sequences. For example, in a trans-
membrane domain, all of the amino acids are hydrophobic

Markov models: In sequence analysis, we consider the context of a letter to be the preceding
letter only. We know that there are letters on either side of any particular letter, but by
considering the context from one side only, it makes our lives much easier because we can treat
sequences as the products of Markov models. A Markov model has a fixed number of states
and transition probabilities for moving between states. During each "time step", the model
moves randomly from one state to another. Think of a Markov
model as a machine that randomly generates a set of states. As an
example, let's consider the weather as such a machine. Suppose
that each day (or hour, or other time point) can be Sunny, Cloudy,
or Rainy. If we do not take context into account, we would expect
that any weather can follow any weather. But we know from
personal experience that it usually gets cloudy before raining, and
sunny or rainy days tend to follow each other. Taking context into
account means that we want the weather tomorrow to depend on
the weather today. We can draft these concepts quite simply in a
Markov model. Look at the example figure. Imagine starting in a
state and "rolling dice" to change from one state to the next to generate weather patterns.
Markov models often have beginning and ending states. This might not make sense in terms of
the weather, but imagine music being generated from a Markov model. The song should end.

Sequences as Markov models: Now let's get back to biology. The A. thaliana genome is
approximately 32% A. Under an independent model, we would
expect that seeing AA is simply (0.32)(0.32) = ~10%. What we
actually observe is 36%. Very different. To make a Markov model of
the A. thaliana genome, we can simply build a table showing the
conditional probabilities for each letter. Now if we "roll dice", the
resulting sequence will look a little more like the A. thaliana genome.

Previously we noted that introns and exons do not have the same compositions. As Markov
models they are even more different. Context is very important, and this becomes more

Sequence Analysis Primer Korf

8/11

Base
A. thalianaA. thalianaA. thaliana D. radiodurans

Base Genome Exon Intron Genome
A 32.00 29.85 26.73 16.54
C 18.02 20.14 15.46 33.51
G 18.01 20.16 17.16 33.45
T 31.97 29.84 40.64 16.49

Sunny

RainyCloudy 0.40.5

0.6

0.3
0.1

0.3

0.3

0.2

0.3

Preceding SymbolPreceding SymbolPreceding SymbolPreceding Symbol
SymbolA C G T
A 36.18 35.24 35.58 23.98
C 16.36 18.81 16.65 20.02
G 18.57 12.99 18.74 19.86
T 28.89 32.97 29.03 36.14

apparent with greater context. The order of a Markov model is the number of letters of context.
Simple base composition is 0th order. The weather model was 1st order. We can take even
more letters into context if we like. For example, in a 2nd order model, the probability of the next
state depends on the previous 2 states.

Training: Assigning the various probabilities is called training. Generally, we train the model by
making observations. For example, we can count up how often we see a T given that the
previous base is a C. Consider what would happen if we tried to train a 15th order model. Each
15-mer of context occurs on average approximate 4^-15 times, which is about 1 in 1 billion. For
a genome the size of A. thaliana, each context is seen less than one time. As a result, most of
the observations are zeroes, which leads to a useless model.

Intron Mediated Enhancement (IME): Now let's look at a biological example of where these
kinds of analyses can be useful. Most people consider introns to be "junk DNA". It turns out they
do sometimes serve a useful role. This is most often seen when people make trans-genes and
find that they do not express very well. Placing an intron inside the coding sequence often
improves expression. In many organisms, people put introns into their constructs out of habit,
but nobody really knows why they help. Recently, the Rose and Korf research groups (of UC
Davis) made a large advancement in our understanding of IME using Markov modls.
http://www.plantcell.org/cgi/content/abstract/tpc.107.057190v1

Hidden Markov models: In an HMM, the Markov model is hidden behind emissions.

Emissions: A Markov model has states and transitions. In a hidden Markov model (HMM) we
add one more feature: emissions. An HMM is similar to a
Markov model except that each stay in a state emits a
symbol. In an HMM, we cannot observe the state directly.
Instead, we observe something that happens in that state
(the symbol).

Weather machine revisited: What if you were interested in
the weather, but were not able to actually observe it.
Perhaps all you could observe is how I arrive to work:
bike, car, or skate. I generally like to bike, but on rainy
days I might take a car, and on sunny days I might skate.
By making a lot of observations, you could create an HMM
as drawn.

HMMs are generative models, so think of them as
machines that generate sequences. In this case, the
sequence generated will be Bike, Car, or Skate. The weather HMM might generate a sequence
such as BBBCBBSBSSBCBB. The point of an HMM is not to generate sequences, but to make
inferences about the underlying Markov model given some observations.
To give a little intuition in this, consider what you would conclude if you
saw SSSSS for the week. Not rainy, for sure, and probably more likely to
be sunny than cloudy. But what is the most likely sequence of states,
and how likely is any given prediction? We will see that in just a bit.

Toy gene finder: Let's consider a biological example. The sequences we
observe in biology are DNA, RNA, and protein. What we want to know is
what kind of functional category they belong to. For gene finding, we
might want to know where the exons are. We can build a gene finder by
making an HMM that emits gene-like sequences. Let's begin with just
two states, exon and intron. Let's say that on average exons are 100 bp

Sequence Analysis Primer Korf

9/11

Sunny

RainyCloudy 0.40.5

0.6

0.3
0.1

0.3

0.3

0.2

0.3

Bike 0.5
Car 0.5

Skate 0.0

Bike 0.7
Car 0.2

Skate 0.1

Bike 0.6
Car 0.1

Skate 0.3

Exon

Intron

0.99

0.98

0.01

0.02

A 0.2

C 0.3

G 0.3

T 0.2

A 0.3

C 0.2

G 0.2

T 0.3

http://www.plantcell.org/cgi/content/abstract/tpc.107.057190v1
http://www.plantcell.org/cgi/content/abstract/tpc.107.057190v1

long and 60% GC. Introns are 50 bp on average and 40% GC. Given these parameters, we can
build a gene HMM as shown.

Decoding: The point of HMMs is not to generate sequences, but to decode them. That is, given
a sequence such as CAATATATAGCAGTGGACCCGCATATATAAAATA, the underlined portion is
obviously more GC-rich than the ends and was
therefore probably emitted by an exon state. To
determine the most likely path, we use the Viterbi
algorithm. It is very similar to the N-W and S-W
algorithms for sequence alignment. It uses dynamic
programming to find the most likely state path given
the observed sequence. Like S-W and N-W, the point
is to extend the optimal path by one cell. The best
path at the shaded cell is found by finding the maximum probability from all states leading to the
shaded cell. There are 3 components: (1) the probability in the previous cell (2) the transition
probability from a preceding cell to the shaded cell (3) the emission probability in the shaded
cell. Just like in alignment, we find the maximum value, record this in the cell, and record a trace
back pointer to the previous cell. The DP matrix is initialized with probabilities for Begin and End
states (often not shown) and the trace back begins from the cell with the greatest probability in
the last column. By tracing back through the DP matrix, one finds the maximum state path for
any observed sequence. There are other decoding algorithms, such as the forward-backward
algorithm, which tells you the likelihood of each state at each position.

Prosite patterns and PWMs: HMMs are generalizations of Prosite patterns and PWMs. For
example, the Protein Kinase C pattern [ST]-X-[RK] can be written as a 3 state HMM with
emission probabilities 50% S or T, anything, 50% R or K. To introduce variable length regions,
we simply put in some extra states or self-loops. A PWM is simply an HMM where each position
is a state that emits A, C, G, or T, and transition probabilities are all 100%.

Profile HMMs: One of the most common and useful applications for HMMs is to describe protein
domains and families. Here, a generic structure is used for all proteins. So rather than devise an
HMM for each protein, one only needs to change the the transitions and emission probabilities.
In the diagram, the M states correspond to columns of a multiple alignment. The emission
probabilities here reflect the column. The I
and D states are for insertion and
deletions. The insertions generally follow
the average amino acid composition. A
more complete model also includes N-
and C-terminal extensions. There are two
common software packages for protein
profile HMMs: HMMER and SAM.

Pfam: The Pfam database contains a large collection of multiple alignments and profile HMMs.
This is one of the most important bioinformatics databases.

Generalized HMMs: In a traditional HMM, each state emits a single symbol and then transitions
to another state. One consequence of this is that the length of time one stays in any particular
state is geometrically distributed. For example, given a 50% chance to return to the same state,
the chance of staying in that state for 1 time period (0.5) is greater than 2 time periods (0.5 x
0.5). From a modeling perspective, this means that even if we create a model to have an
average stay of 100 bp (i.e. a 99% chance of returning to the same state), the maximum
probability is always at 1 bp. The lengths of exons, introns, and other biological sequence
features often have some minimum and value and a peaky shape. To model this property we
use generalized HMMs (GHMMs). In a GHMM, each state emits a randomly generated

Sequence Analysis Primer Korf

10/11

C

Exon

Intron

S
ta
te
s

Sequence

A A

http://hmmer.janelia.org
http://hmmer.janelia.org
http://www.soe.ucsc.edu/compbio/sam.html
http://www.soe.ucsc.edu/compbio/sam.html
http://pfam.sanger.ac.uk
http://pfam.sanger.ac.uk
http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/Geometric_distribution

sequence whose length follows any distribution. For this reason, GHMMs are also called explicit
duration HMMs.

GHMM for eukaryotic genes: At the right is a simple GHMM for eukaryotic
genes. The Einit state is initial exons which contain an ATG and a splice
donor site. The Eterm contains a splice acceptor and a stop codon. For multi-
exon genes, there are intron and exon states. Each exon has a splice
acceptor and donor site. The Esngl state corresponds to genes without
introns. The Inter state is for intergenic sequence between genes. We could
add more states to the model, such as 5'UTR, 3'UTR, promoter, poly-A site
etc. If you look at GHMMs described in the scientific literature (try this one),
you might notice that there are many more intron and exon states. A splice
site may interrupt a codon in any of 3 positions. To prevent frame shifts and
fused stop codons, it is necessary to add extra states exon and intron states
that capture this information.

A GHMM for 3' end formation: The most common place to find GHMMs is gene structure
prediction, but they can be used to model other features. One example is 3' end formation.
Recall that the AATAAA motif lies ~15 bp upstream of the poly-A tail. Rather than using just the
AATAAA motif to predict poly-A sites, one can use all the information available including the
cleavage site (found by aligning mRNAs to a genome) and regions surrounding the cleavage
site and AATAAA motif.

Sequence Analysis Primer Korf

11/11

Exon

Inter

Einit Eterm

Intron

Esngl

http://www.biomedcentral.com/1471-2105/5/59
http://www.biomedcentral.com/1471-2105/5/59
http://nar.oxfordjournals.org/cgi/content/full/32/11/3392
http://nar.oxfordjournals.org/cgi/content/full/32/11/3392

