
What is information?: We all have an intuitive idea about what information is. If  we ask a kid 
what their favorite food is and they say 'chocolate' or 'ice cream', it's not very informative. We 
expected an answer like that. If  they say 'broccoli and cheese' 
we would probably remember that weird kid. Information is a 
degree of surprise. The more surprising the message, the 
informative the message. The mathematical definition of 
information assumes there is an information source that emits 
messages. The information of  any particular message is given in 
equation 1. Information is almost always calculated in base 2 
and therefore given the unit bits  (binary digits). Sometimes you may see nats, which 
corresponds to the log base e. For our purposes, we will usually use base 2 for log, and bits will 
be the units. As an example, let's say that the answer to an average kid's favorite food is 
'chocolate' 50% of  the time. The information of 'chocolate' is 
simply the -log(0.5) or 1.0 bit. Similarly, if  the probability of 'ice 
cream' is 0.25, this is 2.0 bits. An easy way to think about this is 
as powers of  two: 0.5 is 2-1 and 0.25 is 2-2. A message occurring 
~1/1000 times has 10 bits of information (210 = 1024).

What does this have to do with genomics?: In order to determine if two sequences are related to 
each other, we need (a) some way to align sequences (b) some way to determine if  the 
alignments are significant. It is common to use information theory to determine the significance.

Information content: Generally, we are more interested in the information content of  a source 
rather than the information of  any particular message. A rich source of  information provides you 
with a lot of  surprise on average. Information content is simply the average information per 
message (equation 2). Information content is also called entropy or Shannon's Entropy 
because it was invented by Claude Shannon. An information source can be thought of  as a 

frequency distribution (histogram). Some histograms are more 
predictable than others. For example, consider two coins, one is fair, 
the other a trick coin. The fair coin comes up heads 50% of  the time. 
The trick coin is heads 90% of the time. Which one is more 
predictable? As an information source, which one has higher 
information content? What about a fair vs loaded die? What about 
DNA? What about DNA with highly biased composition? Try working 
some examples.

Relative entropy: Let's say you have nucleotide frequencies 
from several different genomes and you want to know  which 
ones are the most similar to each other. How  might you 
compare them? If  you consider the sequences to be 
information sources and nucleotides to be messages, then 
you can use relative entropy to measure the similarity. This is 
also called Kullback-Leibler distance (equation 3). Strictly 
speaking, D(P||Q) is not always D(Q||P) but it's usually close. 
Note that if  P or Q contains any zero probability values, you 
may get numerical errors (divide by zero or log zero).

Codon bias: In the genetic code, some triplets code for the same amino acid, but not all codons 
are used with the same frequency. In different genomes the biased codons may not be the 
same. Codon bias probably exists because of translational efficiency. Not all tRNAs are 
expressed at the same level. As a result, highly expressed genes are optimized to use abundant 
tRNAs so they don't have to "wait" for rare tRNAs. Given that the codon bias of an organism is a 
kind of signature, if  you found a gene with very different codon usage, you might expect 
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Equation 1
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I(m) = − log2 P(m)
I: information
m: message
P(m): probability of message

Equation 2

€ 

H = − Pi log2∑ Pi
H: information content
Pi: probability of message i

Most programming languages 
have a log function that returns 
values in log base e. To convert 
to base 2, simply divide by log(2).

Equation 3
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D(P ||Q) = Pi∑ log2
Pi
Qi
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D: distance
P: some frequency distribution
Q: other frequency distribution
Pi: probability of message i in P
Qi: probability of message i in Q



horizontal gene transfer. You could use K-L distance to find outliers in a genome. In such an 
experiment, the source is the codon usage, and each message is a triplet.

Amino acid similarity: One of the most fundamental 
concepts in biology is that similarity is an indicator of 
common  evolutionary history. Many phylogenetic trees 
are based on proteins. Before we can compare 
proteins, we need to be able to compare amino acids. 
How  similar are any two amino acids? One could look 
at size, shape, charge, hydrophobicity, functional 
groups, etc. You can imagine a lot of  different ways. 
The image at the right summarizes some of these 
ideas. Another way to determine similarity is by asking 
how often can one amino acid substitute for another in a protein? How  would you design such 
an experiment? Replace an amino acid with another and perform some kind of assay for protein 
function? That would be great but it's a lot of  work. Luckily, these experiments have already 
been performed billions and billions of times... in nature (evolution).

Margaret Dayhoff: The 'mother of  bioinformatics' aligned orthologous proteins by hand and 
published the multiple alignments in the Atlas of Protein Sequence and Structure. She and her 
colleagues produced multiple volumes of the atlas. Using known phylogenetic relationships, she 
was able to observe the rate at which one amino acid changes to another, which is called the 
substitution frequency. These changes are not symmetrical. That is, changing from G -> V ≠ 
V -> G. This is the truth, but we generally ignore this and average them. Today, there are too 
many proteins for a print publication. Databases like SwissProt, GenBank, and TrEMBL take 
place of the Atlas. Similarly, aligning all the sequences by hand would not be possible. There are 
several computer programs for creating multiple alignments (ClustalW, Dialign, T-Coffee).

The score for pairing amino acids is shown in Equation 4. The score, S,  for any two amino 
acids i and j is the log of the observed substitution frequency (Qij) divided by the expected 
substitution frequency. The observed frequency 
comes from counting occurrences in multiple 
alignments. The expected frequency is simply the 
chance that any two amino acids would be selected 
at random, so this is the 
product of  the probabilities of 
the individual amino acid 
frequencies Pi and Pj.
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Equation 4

€ 

Sij = log
Qij

PiPj
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Amino acid score examples
Given:  PM = 0.02, PL = 0.1, PE = 0.04
 QML = 0.004, QME = 0.001, QLE = 0.002
Calculate:
 SML, SLE, SME

SML = log(0.004 / (0.02)(0.1)) = 1.0 bit
SLE = log(0.002 / (0.04)(0.1)) = -1.0 bit
SME = log(0.001 / (0.02)(0.04)) = 0.32 bits



Scoring matrices: A scoring matrix (at right) is 
simply a table of all pairwise scores. The matrix 
produced by Dayhoff is called the PAM matrix (a 
rearrangement of acceptable point mutations). If 
you look at the scores in a matrix, you will note 
that they are all integers. What happened to 
values like 0.32 bits? They were scaled and 
rounded off. For example, one might scale 0.32 
by a factor of 2 and then round off   0.64 to +1. 
Why? Historically, computers were slow  and 
had little memory, so people used integers. 
There is no reason to do this now  (floating point 
calculations are actually faster than integer 
today), but the practice of using integers for 
scoring matrices continues. Once the scores in 
a matrix are scaled and rounded off, the units 
are no longer bits.

Expected score: An important property of a matrix is its expected score 
(equation 5). To calculate this, one sums up the score contribution of 
each pairing (the contribution depends on the score and the expected 
frequencies of the individual amino acids). In general, the expected 
score of a matrix is negative.

Relative entropy: The most important property of a scoring matrix is 
its relative entropy (equation 6). This is the bits per aligned pair of 
amino acids. To gain some intuition for this, imagine if  the observed 
pairing (Qij) is equal to expected (PiPj). In this case, H = 0. That is, 
the scoring system reflects the random expectation. This is not so 
different from K-L distance if you compare to identical histograms. 
The distance is zero. H is maximum when what is observed is very different from what is 
expected. When does this happen? Continuing from the previous example where PM = 0.04 and 
PL = 0.1, the expectation is 0.004. If  M is rarely observed to align with L, then QML will be 
different from PMPL. If you create a scoring matrix from proteins that are all very similar to each 
other, there will be few  substitutions, and Qij will be very different from PiPj. In biological terms, a 
scoring matrix from highly conserved orthologous proteins will result in a matrix with high H 
whereas a matrix derived from less similar proteins will have low  H. If  the alignments are 
random sequences with no real relationship, H will be zero. Choosing the correct matrix is 
important. If you are looking for distant similarities, you will not find them with a matrix with high 
H. On the other hand, if  you are looking for very short sequences, H must be high to be 
significant (more on this later).

BLOSUM matrices: Henikoff & Henikoff created their scoring matrices automatically. They did 
not restrict themselves to proteins with known phylogenetic relationships. To calculate the 
various Qij values, they assumed all pairings were possible. For any column in a multiple 
alignment, the counts of  different amino acids is NiNj and the counts for the same amino acid is 
N choose 2. N! / 2! (N - 2)!

Imperfect spelling: Have you ever wondered how  a spelling checker works? How  does it know  if 
the word is misspelled, and how  does it suggest correct spellings? This area of computer 
science is called inexact (approximate, fuzzy) string matching. The bioinformatics equivalent is 
called sequence alignment. In bioinformatics, we often treat nucleotides and proteins as strings 
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BLOSUM62 Scoring Matrix
   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V
A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0
R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3
N -2  0  6  1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3
D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3 
C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2
E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2
G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1  1
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2
S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4  1 -3 -2 -2
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2  0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7 -1

Equation 5
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of letters. Even though we know  that biological sequences are 3-dimensional entities with 
physical and chemical properties, it's much easier to process them as 1-dimensional strings. 
Sequence alignment is used for a variety of  bioinformatics tasks. Sometimes we take have it for 
granted that we can assemble a genome and identify repeats. There are also many other tasks 
that require sequence comparisons such as determining the function of newly discovered 
proteins, gene finding, constructing phylogenetic trees, and designing oligos. So how  do we 
know if  two sequences are similar? There are two fundamental concepts: (1) creating 
alignments (2) determining if alignments are significant. We will first discuss how  to create 
alignments and then consider their significance.

Dot plots: A simple way to look at the relationship between two sequences is 
a dot plot (or dot matrix). This is a 2D matrix with a sequence along each 
axis. Each point in the matrix corresponds to a specific letter in each 
sequence. Regions of  similarity appear as diagonals in the matrix. Rather 
than draw  dots, it easier to draw  lines showing just the similar regions. In the 
8 graphs shown: (a) an alignment showing a regional similarity between two 

sequences (b) a section in the middle 
does not align as well (c, d) the similar regions are 
separated by a gap (e) a sequence aligned to itself (f) 
sequence 1 has a duplication (g) a sequence with a repeat 
aligned to itself  (h) a sequence with an SSR aligned to itself. 
Note that in (c, d) there is either an insertion in one 
sequence or a deletion in the other. Gaps are therefore often 
called indels.

Pairwise alignment: There are two "flavors" of  pairwise alignment: global and local. 
In global alignment, the goal is to align every letter of  the two sequences. Consider 
aligning the letters in these two sequences: (1) ACTTTGA (2) TTT. One possible 
alignment between these is shown as "align 1". Every letter in each sequence is 
either aligned to another letter or a gap (-) symbol. If the sequences are identical, it is 
typical to use a | character between the sequences to indicate this. Another common 
convention is to use the letter. Whenever sequences have unequal lengths, there will 
be gaps. The gaps can occur anywhere. For example, an alignment between (1) and 
another sequence (3) ACTGA is shown as "align 2". In local alignment, only the 
best region is kept. "Align 3" shows two possible local alignments of sequences 
(1) and (3). Both are equally good. There are also a large number of really poor 
alignments one could make.

Alignment scoring: In order to compare alignments to each other, we can give them a score. A 
simple scoring scheme is to give every matching letter a score of +1 and every mismatch or gap 
a score of -1. Under such a scheme, the scores for alignments 1-3 are: -1, 3, and 3.

Needleman-Wunsch algorithm: To find the best global alignment one uses the N-W algorithm (or 
some variant of it). The number of possible alignments between two sequences is huge. You 
can put gaps in either sequence anywhere you like (but not across from each other). A naive 
alignment algorithm would enumerate all possible gaps and then choose the alignment with the 
best score. Even with short sequences this quickly becomes unwieldy and in biological 
sequences, which can be huge in the case of  chromosomes, the number of alignments 
becomes astronomical. N-W uses dynamic programming (DP) to efficiently find a single highest 
scoring alignment. There may be more than one alignment with the maximum score, but the 
algorithm usually only returns one of  these. To begin the N-W algorithm, the sequences are 
entered into a matrix (like a dot plot) with an extra 1st column and row. There are 3 steps to the 
algorithm: (1) initialization (2) fill (3) trace back. In the initialization, the first row  and column are 
set to gap scores. In the fill, a recursive operation is used to update the maximum score of every 
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sequence 1
C A C G A T C

A
C
G
T
T
C
A

a b c d

e f g h

Align 1
ACTTTGA
  |||
--TTT--

Align 2
ACTTTGA
|| | ||
AC-T-GA

Align 3
ACT    TGA
||| or |||
ACT    TGA

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Dynamic_programming


cell. In the trace back, the alignment is recovered by 
following the maximum alignment from the bottom right 
of the matrix through the top left.

Let's take a close look at the fill. In order to fill a cell, 
you must have 3 neighboring cells located above, to 
the left, and diagonally above and left. At the beginning, 
there is only one cell that can be filled. This is the one 
that aligns the first A and A in the example. To fill this 
cell, you must determine the maximum score of  3 
possible directions (diagonal, up, and left).

Diagonal score = score of diagonal cell + match or mismatch score (either +1 or -1)
Left score = score of left cell + gap score (-1)
Up score = score of up cell + gap score (-1)

When you move horizontally or vertically, you do not consider wether the nucleotides match or 
not because this operation introduces a gap character. The power of  DP is that we do this same 
operation of  looking at 3 possible alignments at every position in the matrix. But we are not 
enumerating all possible alignments, we are always extending the previous maximum 
alignment.

Smith-Waterman algorithm: To find the maximum 
scoring local alignment, you can use the exact same 
procedure as N-W except that (a) any score below  0 is 
given the score of 0. At the end, the trace back is 
performed from the highest score in the matrix rather 
than the last cell of the matrix.

Scoring system: Different match, mismatch, and gap 
scores will result in different alignments. Try the same 
sequences with a gap score of -2 and you will get a 
slightly different alignment.

Computational considerations: The N-W and S-W algorithms as described are not used for 
aligning long sequences. One reason is that the amount of memory to hold the DP matrix 
becomes excessive. Each cell in the matrix must hold a score and a directional pointer. This 
might be 5 bytes of RAM per cell. In order to align two BACs of  100 kb each, you would need 
about 50 GB of RAM (1e5 x 1e5 x 5). What if you wanted to align some genomes? No computer 
on the planet has enough RAM. Another reason not to use N-W and S-W is that most of  the the 
space in a DP matrix has a low  score. Why align everything rather than just the best parts?  
Sequence alignment is one of  the oldest areas of bioinformatics research, but it is still very 
active. There are a lot of clever programs that perform alignments very quickly without using 
much memory. At the root of all these programs is some variant of the S-W algorithm.

Aligning Proteins: Previously we aligned sequences using a +1 match -1 mismatch -1 gap 
scoring scheme. In practice, this match/mismatch scoring scheme is only used for aligning 
nucleotides. For aligning proteins, we use scoring matrices like BLOSUM62 to take into account 
that alignment often preserves chemical properties.

Sequence similarity: To determine protein similarity we simply align two proteins and sum up the 
amino acid scores. In principle, we could determine similarity scores from local or global 
alignments. In practice, we use local alignment only. One reason for this is that there is no 
established procedure for determining global alignment significance.
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Alignment scores: What does an alignment score mean? Is a score of  30 good? Does 30 mean 
the proteins are homologous or functionally related? What if  the scores in the matrix were 
scaled by 10 vs 5? Is a score of 100 necessarily better than 50?

Significance: In typical frequentist statistics, one accepts or rejects an hypothesis based on 
some random model. For local alignments, we use the same idea. Given an alignment score, 
we would like to know  how often such a score would be expected to occur at random. If the 
score is easily attained at random, then it is probably not very significant.

Karlin-Altschul statistics: Local alignment statistics were formalized by 
Karlin & Altschul using information theoretic methods. Given certain 
assumptions (see box) the K-A equation (equation 7) tells you how  often 
such a score (or higher) is expected at random. For some intuition in this, 
imagine comparing two books to see if they have similar sentences. If the 
books are very short, you don't expect may similar sentences. 
Conversely, if the books were gigantic, you would expect to find many 
more similar sentences. The product MN is called the search space, and 
the number of expected alignments varies linearly with the size of the 
space. Now  imagine that you have a threshold score for what you accept 
as similar sentences. If you ask for a higher score, you will find fewer sentences. The K-A 
equation shows that this is an inverse exponential relationship. In other words, a small change 
increase in score can lead to a large reduction in the number of alignments expected at random. 
The fact that λ is in the exponent indicates that E is also highly dependent on its value. λ is 
effectively the inverse of the scaling factor used to create the matrix (but not exactly due to 
rounding). In other words, λ turns the matrix score  into a log-odds score. Now  we can begin to 
answer the questions we previously posed. Is a score of 30 good? It depends on the search 
space. In a large search space, 30 may be expected at random, but it might be highly significant 
in a small search space. Is a score of 100 better than 50? If the only difference is the scaling 
factor, then the significance is the same because λ will normalize them to the same bit score.

K-A issues: Let's take a look at the K-A assumptions. #1 and #2 are true of any scoring matrix 
derived from multiple alignments. But we can also make up an arbitrary scoring scheme such as 
our original +1/-1 match/mismatch scheme. Is this legal? What would happen if the scheme was 
+2/0? What about -1/-2? What about +10/-1? 
When might +1/-1 be illegal? #3 is only a problem 
when sequences are very short. To deal with this 
problem, people consider the search space to be 
smaller in each dimension by log(kMN)/H, which is 
the length of the expected random alignment. #4 
states that letters are independent and identically 
distributed. In other words, the probability of  finding a sequence such as AAA is simply the 
product of finding A cubed. Does this make sense? Not really considering that genomes and 
proteins contain a lot of repeats. #5 disallows gaps. But we know  S-W alignments can contain 
gaps. We will return to the gap problem in a bit.

Lambda revisited: In order to compute E, we need λ for our scoring scheme. We might know 
this value ahead of time if  we created our own scoring matrix, but if someone else created it, or 
we used a system like +1/-1, we need to be able to derive λ somehow. λ cannot be solved for 
algebraically, but we can estimate its value to arbitrary precision.

It turns out that our old +1/-1 scoring system implies a pairing frequency of about 75% given that 
the 4 nucleotides have 25% frequency. If we had started with nucleotide alignments containing 
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Equation 7
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E = kMNe−λS
E: number of alignments
k: a constant
M: size of sequence 1
N: size of sequence 2
e: 2.7182818...
λ: scaling factor
S: score of alignment

Karlin-Altschul Assumptions
1.A positive score must be possible
2.Expected score of matrix must be negative
3.Sequences are infinitely long
4.Letters are independent and identically distributed
5.Alignments do not contain gaps



about 75% identity, and the marginal nucleotide 
frequencies were all 25%, we would have ended 
up with a +1/-1 scoring system. +1/-1 does not 
imply 75% identity in proteins however.

Gaps revisited: So what do we do about gaps? 
Gaps make it easier to align two sequences. 
Therefore, gaps effectively reduce H. To account 
for this in the K-A equation, we can simply 
decrease λ, and this will decrease the bit score of 
the alignment and therefore increase the E value. 
How  much we reduce λ depends on the specific 
match, mismatch, and gap penalties. It is not 
possible to compute these adjustments 
algebraically, so they are computed via simulation 
(e.g. do billions of random alignments with a 
variety of scoring systems to compare how 
gapped and ungapped alignments are related).

BLAST: One of the most famous and popular 
bioinformatics applications is BLAST (Basic Local 
Alignment Search Tool). This combines sequence 
alignment and statistical evaluation in a single, 
efficient program. BLAST is similar to S-W in 
principle: both are local alignment algorithms. But 
BLAST is much faster because it does not explore the 
entire search space. There are 3 steps to the BLAST 
algorithm: (1) seeding (2) extension (3) evaluation. In 
the seeding phase, regions containing identical (or 
highly similar)  strings are identified. These points in the 
space are expected to contain the good local 
alignments. In the extension phase, each seed 
undergoes a S-W-like alignment, but the extension 
stops if the alignment quality degrades too much. In the 
evaluation phase, the alignment is subjected to the K-A 
equation to determine how  often the alignment is 
expected by chance. If  the E value is less than some 
user-defined threshold, then the alignment is reported.
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seeds

extension

evaluation

Program Database Query Example

BLASTN DNA DNA Align mRNA to genome

BLASTP AA AA Search for proteins related to ____

BLASTX AA DNA Find coding exons in a BAC

TBLASTN DNA AA Search for transcripts similar to ____

TBLASTX DNA DNA Find orthologous coding exons
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The usual equation for the score 
of any amino acid pair.
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λ is the inverse of the scaling 
factor used when the matrix was 
scaled and rounded off. When 
scores are in bits, λ = 1.
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eλSij =
Qij

PiPj
Exponentiate each side of the 
equation.
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Qij = PiPje
λSij

This is the most important part. 
It shows that an observed 
pairing frequency is implied 
given the marginal compositions 
and a scoring scheme.
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Qij =1∑∑ By definition all observed pairing 
frequencies sum to 1.0
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We can solve for λ by making 
refined guesses at its value. If 
our guess is too high, the sum 
will be > 1. If it is too low, the 
sum will be < 1.



From extrinsic to intrinsic models: Sequence alignment assumes all letters are independent of 
one another. This is useful if  you are looking for conservation in general, but what if you are 
interested in a particular type of  sequence, such as a promoter, or a protein domain? For this 
kind of question, we can need more specific models.

Composition: A simple yet useful attribute of  a genome is 
it's base composition. For example, A. thaliana is AT-rich 
and D. radiodurans is GC-rich. The composition is generally 
not uniform, however. For example, A. thaliana exons are 
more GC-rich than introns. When we describe a sequence 
by its composition, we are implicitly creating a sequence 
model where every nucleotide is independent of every other nucleotide. We would therefore 
conclude that the probability of  seeing AAAAAA is simply the probability of  A to the 6th power. 
However, this is not the case in real sequences. Low-complexity sequences occur much more 
frequently than expected by chance. While composition is a useful attribute, it ignores the 
context of each nucleotide.

Context: The context of  a letter is defined by the letters closest to it. Before we consider the 
context of biological sequences, let's think about a more familiar case: language. In English, Q 
is almost always preceded by a vowel (or nothing) and followed by U. A simple compositional 
description of  English would assume that some words contain QQ, but we know  this to be false.  
Context matters. Context is also important in biological sequences. For example, in a trans-
membrane domain, all of the amino acids are hydrophobic

Markov models: In sequence analysis, we consider the context of a letter to be the preceding 
letter only. We know  that there are letters on either side of  any particular letter, but by 
considering the context from one side only, it makes our lives much easier because we can treat 
sequences as the products of  Markov models. A Markov model has a fixed number of  states 
and transition probabilities for moving between states. During each "time step", the model 
moves randomly from one state to another. Think of a Markov 
model as a machine that randomly generates a set of  states. As an 
example, let's consider the weather as such a machine. Suppose 
that each day (or hour, or other time point) can be Sunny, Cloudy, 
or Rainy. If we do not take context into account, we would expect 
that any weather can follow  any weather. But we know  from 
personal experience that it usually gets cloudy before raining, and 
sunny or rainy days tend to follow  each other. Taking context into 
account means that we want the weather tomorrow  to depend on 
the weather today. We can draft these concepts quite simply in a 
Markov model. Look at the example figure. Imagine starting in a 
state and "rolling dice" to change from one state to the next to generate weather patterns. 
Markov models often have beginning and ending states. This might not make sense in terms of 
the weather, but imagine music being generated from a Markov model. The song should end.

Sequences as Markov models: Now  let's get back to biology. The A. thaliana genome is 
approximately 32% A. Under an independent model, we would 
expect that seeing AA is simply (0.32)(0.32) = ~10%. What we 
actually observe is 36%. Very different. To make a Markov model of 
the A. thaliana genome, we can simply build a table showing the 
conditional probabilities for each letter. Now  if we "roll dice", the 
resulting sequence will look a little more like the A. thaliana genome. 

Previously we noted that introns and exons do not have the same compositions. As Markov 
models they are even more different. Context is very important, and this becomes more 
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Base
A. thalianaA. thalianaA. thaliana D. radiodurans

Base Genome Exon Intron Genome
A 32.00 29.85 26.73 16.54
C 18.02 20.14 15.46 33.51
G 18.01 20.16 17.16 33.45
T 31.97 29.84 40.64 16.49

Sunny

RainyCloudy 0.40.5

0.6

0.3
0.1

0.3

0.3

0.2

0.3

Preceding SymbolPreceding SymbolPreceding SymbolPreceding Symbol
SymbolA C G T
A 36.18 35.24 35.58 23.98
C 16.36 18.81 16.65 20.02
G 18.57 12.99 18.74 19.86
T 28.89 32.97 29.03 36.14



apparent with greater context. The order of a Markov model is the number of  letters of context. 
Simple base composition is 0th order. The weather model was 1st order. We can take even 
more letters into context if we like. For example, in a 2nd order model, the probability of  the next 
state depends on the previous 2 states.

Training: Assigning the various probabilities is called training. Generally, we train the model by 
making observations. For example, we can count up how  often we see a T given that the 
previous base is a C. Consider what would happen if  we tried to train a 15th order model. Each 
15-mer of context occurs on average approximate 4^-15 times, which is about 1 in 1 billion. For 
a genome the size of  A. thaliana, each context is seen less than one time. As a result, most of 
the observations are zeroes, which leads to a useless model.

Intron Mediated Enhancement (IME): Now  let's look at a biological example of  where these 
kinds of analyses can be useful. Most people consider introns to be "junk DNA". It turns out they 
do sometimes serve a useful role. This is most often seen when people make trans-genes and 
find that they do not express very well. Placing an intron inside the coding sequence often 
improves expression. In many organisms, people put introns into their constructs out of  habit, 
but nobody really knows why they help. Recently, the Rose and Korf research groups (of  UC 
Davis) made a large advancement in our understanding of IME using Markov modls.
http://www.plantcell.org/cgi/content/abstract/tpc.107.057190v1

Hidden Markov models: In an HMM, the Markov model is hidden behind emissions.

Emissions: A Markov model has states and transitions. In a hidden Markov model (HMM) we 
add one more feature: emissions. An HMM is similar to a 
Markov model except that each stay in a state emits a 
symbol. In an HMM, we cannot observe the state directly. 
Instead, we observe something that happens in that state 
(the symbol).

Weather machine revisited: What if you were interested in 
the weather, but were not able to actually observe it. 
Perhaps all you could observe is how  I arrive to work: 
bike, car, or skate. I generally like to bike, but on rainy 
days I might take a car, and on sunny days I might skate. 
By making a lot of  observations, you could create an HMM 
as drawn.

HMMs are generative models, so think of them as 
machines that generate sequences. In this case, the 
sequence generated will be Bike, Car, or Skate. The weather HMM might generate a sequence 
such as BBBCBBSBSSBCBB. The point of an HMM is not to generate sequences, but to make 
inferences about the underlying Markov model given some observations. 
To give a little intuition in this, consider what you would conclude if you 
saw  SSSSS for the week. Not rainy, for sure, and probably more likely to 
be sunny than cloudy. But what is the most likely sequence of  states, 
and how likely is any given prediction? We will see that in just a bit.

Toy gene finder: Let's consider a biological example. The sequences we 
observe in biology are DNA, RNA, and protein. What we want to know  is 
what kind of  functional category they belong to. For gene finding, we 
might want to know  where the exons are. We can build a gene finder by 
making an HMM that emits gene-like sequences. Let's begin with just 
two states, exon and intron. Let's say that on average exons are 100 bp 

Sequence Analysis Primer Korf

9/11

Sunny

RainyCloudy 0.40.5

0.6

0.3
0.1

0.3

0.3

0.2

0.3

Bike 0.5
Car 0.5

Skate 0.0

Bike 0.7
Car 0.2

Skate 0.1

Bike 0.6
Car 0.1

Skate 0.3

Exon

Intron

0.99

0.98

0.01

0.02

A 0.2

C 0.3

G 0.3

T 0.2

A 0.3

C 0.2

G 0.2

T 0.3
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long and 60% GC. Introns are 50 bp on average and 40% GC. Given these parameters, we can 
build a gene HMM as shown.

Decoding: The point of  HMMs is not to generate sequences, but to decode them. That is, given 
a sequence such as CAATATATAGCAGTGGACCCGCATATATAAAATA, the underlined portion is 
obviously more GC-rich than the ends and was 
therefore probably emitted by an exon state. To 
determine the most likely path, we use the Viterbi 
algorithm. It is very similar to the N-W and S-W 
algorithms for sequence alignment. It uses dynamic 
programming to find the most likely state path given 
the observed sequence. Like S-W and N-W, the point 
is to extend the optimal path by one cell. The best 
path at the shaded cell is found by finding the maximum probability from all states leading to the 
shaded cell. There are 3 components: (1) the probability in the previous cell (2) the transition 
probability from a preceding cell to the shaded cell (3) the emission probability in the shaded 
cell. Just like in alignment, we find the maximum value, record this in the cell, and record a trace 
back pointer to the previous cell. The DP matrix is initialized with probabilities for Begin and End 
states (often not shown) and the trace back begins from the cell with the greatest probability in 
the last column. By tracing back through the DP matrix, one finds the maximum state path for 
any observed sequence. There are other decoding algorithms, such as the forward-backward 
algorithm, which tells you the likelihood of each state at each position.

Prosite patterns and PWMs: HMMs are generalizations of  Prosite patterns and PWMs. For 
example, the Protein Kinase C pattern [ST]-X-[RK] can be written as a 3 state HMM with 
emission probabilities 50% S or T, anything, 50% R or K. To introduce variable length regions, 
we simply put in some extra states or self-loops. A PWM is simply an HMM where each position 
is a state that emits A, C, G, or T, and transition probabilities are all 100%.

Profile HMMs: One of  the most common and useful applications for HMMs is to describe protein 
domains and families. Here, a generic structure is used for all proteins. So rather than devise an 
HMM for each protein, one only needs to change the the transitions and emission probabilities. 
In the diagram, the M states correspond to columns of a multiple alignment. The emission 
probabilities here reflect the column. The I 
and D states are for insertion and 
deletions. The insertions generally follow 
the average amino acid composition. A 
more complete model also includes N- 
and C-terminal extensions. There are two 
common software packages for protein 
profile HMMs: HMMER and SAM.

Pfam: The Pfam database contains a large collection of multiple alignments and profile HMMs. 
This is one of the most important bioinformatics databases.

Generalized HMMs: In a traditional HMM, each state emits a single symbol and then transitions 
to another state. One consequence of this is that the length of  time one stays in any particular 
state is geometrically distributed. For example, given a 50% chance to return to the same state, 
the chance of staying in that state for 1 time period (0.5) is greater than 2 time periods (0.5 x 
0.5). From a modeling perspective, this means that even if we create a model to have an 
average stay of 100 bp (i.e. a 99% chance of  returning to the same state), the maximum 
probability is always at 1 bp. The lengths of  exons, introns, and other biological sequence 
features often have some minimum and value and a peaky shape. To model this property we 
use generalized HMMs (GHMMs). In a GHMM, each state emits a randomly generated 

Sequence Analysis Primer Korf

10/11

C

Exon

Intron

S
ta
te
s

Sequence

A A

 

http://hmmer.janelia.org
http://hmmer.janelia.org
http://www.soe.ucsc.edu/compbio/sam.html
http://www.soe.ucsc.edu/compbio/sam.html
http://pfam.sanger.ac.uk
http://pfam.sanger.ac.uk
http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/Geometric_distribution


sequence whose length follows any distribution. For this reason, GHMMs are also called explicit 
duration HMMs.

GHMM for eukaryotic genes: At the right is a simple GHMM for eukaryotic 
genes. The Einit state is initial exons which contain an ATG and a splice 
donor site. The Eterm contains a splice acceptor and a stop codon. For multi-
exon genes, there are intron and exon states. Each exon has a splice 
acceptor and donor site. The Esngl state corresponds to genes without 
introns. The Inter state is for intergenic sequence between genes. We could 
add more states to the model, such as 5'UTR, 3'UTR, promoter, poly-A site 
etc. If  you look at GHMMs described in the scientific literature (try this one), 
you might notice that there are many more intron and exon states. A splice 
site may interrupt a codon in any of 3 positions. To prevent frame shifts and 
fused stop codons, it is necessary to add extra states exon and intron states 
that capture this information.

A GHMM for 3' end formation: The most common place to find GHMMs is gene structure 
prediction, but they can be used to model other features. One example is 3' end formation. 
Recall that the AATAAA motif  lies ~15 bp upstream of the poly-A tail. Rather than using just the 
AATAAA motif  to predict poly-A sites, one can use all the information available including the 
cleavage site (found by aligning mRNAs to a genome) and regions surrounding the cleavage 
site and AATAAA motif.
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