
Methylation Analysis Centromere Discovery

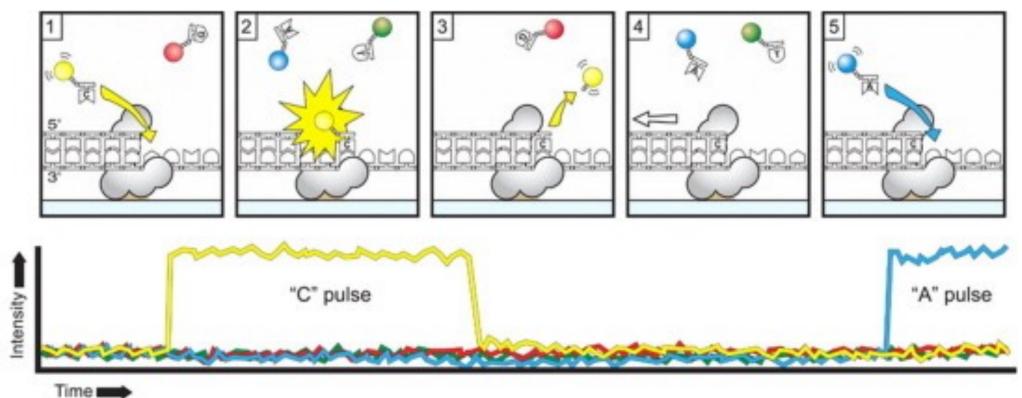
BIS180L

Julin Maloof and Matt Davis

Methylation Overview

• Cytosine (C) Residues can be modified by the addition of a methyl group

https://commons.wikimedia.org/wiki/File:DNA_methylation. svg#/media/File:DNA_methylation.svg


Methylation Context and Roles

- Cytosine methylation can occur in different sequence contexts
 - Animals: "CG" aka "CpG"
 - Plants: "CG", "CHH", "CHG". Each controlled by different enzymes and with likely different roles
- Cytosine methylation
 - Silencing transposable elements
 - Regulation of gene expression
 - Can be dynamic
 - Role in development
 - Role in response to environment
 - Role in imprinting of parental genome

https://commons.wikimedia.org/wiki/File:DNA_methylation. svg#/media/File:DNA_methylation.svg

Cytosine methylation can be measured by PacBio

- PacBio
 - delayed kinetics of base addition.
 - Complicated signal, requires deep-learning to decode
 - Accurate
 - CpG only

Cytosine methylation can be measured by ONT

- ONT
 - C vs 5mC cause different current signal across membrane
 - Accurate
 - All Contexts. Probably better for plants
- Unfortunately, we only have PacBio

Goals / Questions

- Extract the `CG` methylation data for the *S. diversifolius* genome.
- Determine if the `CG` methylation marks follow expected patterns in genes.
- Calculate methylation proportion for each gene and ask if that corelates with gene expression levels
- Display methylation levels across the chromosome and ask if that pattern is non-random at the chromosome level.

Some file types that you will meet

• ".gff" – General Feature Format

• Standard for describing the location of features (genes, introns, exons, repeats, etc) in a genome.

(base) exouser@julin-2:/revio-data/methylation\$ head HiFiasm_S.div.small.gff3

##gff-version 3

ID=Sdiv_ptg0003411_0001;Name=Sdiv_ptg0003411_0001;Alias=maker-p ptg0003411 maker 12350 13413 gene A:1.20.85.10, InterPro: IPR000484, InterPro: IPR036854, PANTHER: PTHR33149, PFAM: PF00124, PRINTS: PR00256, PROSITE: PS00244, SUPERFAMILY: SSF81483; N n D1 (Lepidium virginicum);Ontology_term=G0:0009772,G0:0019684,G0:0045156;Note=Similar to psbA: Photosystem II protein D1 (Lepidium vir terPro:IPR000484, InterPro:IPR036854, PANTHER:PTHR33149, PFAM:PF00124, PRINTS:PR00256, PROSITE:PS00244, SUPERFAMILY:SSF81483; Ontology_term=GO ptg0003411 13413 ID=Sdiv_ptg0003411_0001-R;Parent=Sdiv_ptg0003411_0001;Name=Sdiv maker mRNA 12350 snap-gene-0.6-mRNA-1;Dbxref=Gene3D:G3DSA:1.20.85.10,InterPro:IPR000484,InterPro:IPR036854,PANTHER:PTHR33149,PFAM:PF00124,PRINTS:PR00256 =Similar to psbA: Photosystem II protein D1 (Lepidium virginicum);Ontology_term=G0:0009772,G0:0019684,G0:0045156;_AED=0.48;_QI=0|0|0|1| A: Photosystem II protein D1 (Lepidium virginicum); Dbxref=Gene3D:G3DSA:1.20.85.10, InterPro:IPR000484, InterPro:IPR036854, PANTHER:PTHR331 0244, SUPERFAMILY: SSF81483; Ontology_term=G0:0009772, G0:0019684, G0:0045156;

ptg0003411	maker	exon	13216	13413		-	
ptg0003411	maker	exon	13086	13175		-	
ptg0003411	maker	exon	12656	13043		-	
ptg0003411	maker	exon	12568	12585		-	
ptg0003411	maker	exon	12350	12546		-	
ptg0003411	maker	CDS	13216	13413		-	0
ptg0003411	maker	CDS	13086	13175		-	0
(base) exouse	5						

ID=Sdiv_ptg0003411_0001-R:5;Parent=Sdiv_ptg0003411_0001-R; ID=Sdiv_ptg0003411_0001-R:4;Parent=Sdiv_ptg0003411_0001-R; ID=Sdiv_ptg0003411_0001-R:3;Parent=Sdiv_ptg0003411_0001-R; ID=Sdiv_ptg0003411_0001-R:2;Parent=Sdiv_ptg0003411_0001-R; ID=Sdiv_ptg0003411_0001-R:1;Parent=Sdiv_ptg0003411_0001-R; ID=Sdiv_ptg0003411_0001-R:cds;Parent=Sdiv_ptg0003411_0001-R; ID=Sdiv_ptg0003411_0001-R:cds;Parent=Sdiv_ptg0003411_0001-R;

Some file types that you will meet

- "bed" browser extensible data
 - Simple format to describe an attribute (e.g. CpG) at locations in a genome
 - First 3 columns are always sequenceID, start, end.
 - Remaining columns are more flexible

Š	(base)	exouse	r@julin-2	/revio-	-data/met	nylation\$	head	S_div_cp	g.combi	ned.bed
ιt	ptg0000	011	4568	4569	93.7	Total	35	33	2	94.3
	ptg0000	011	4635	4636	94.8	Total	35	34	1	97.1
	ptg0000	011	4641	4642	94.3	Total	35	34	1	97.1
ni	ptg0000	011	4695	4696	73.2	Total	35	26	9	74.3
	ptg0000	011	4720	4721	95.1	Total	35	34	1	97.1
13	ptg0000	011	4733	4734	95.5	Total	35	34	1	97.1
	ptg0000	011	4747	4748	94.1	Total	35	33	2	94.3
9	ptg0000	011	4793	4794	95.3	Total	37	36	1	97.3
	ptg0000	011	4796	4797	95.7	Total	37	36	1	97.3
	ptg0000	011	4812	4813	96.5	Total	37	36	1	97.3

An important R object class: GRanges

- The "GRanges" class is used for storing genomic data
 - Both .bed and .gff files can be represented as Granges
 - Excellent set operations, overlaps, etc.
 - Powerful but can be painful

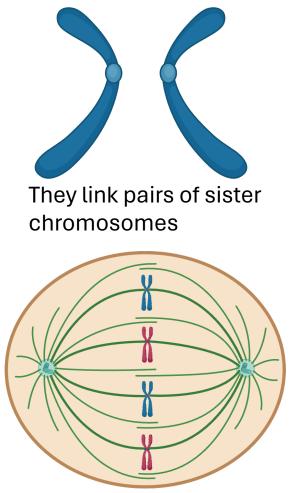
> gff						
GRanges object w	ith 33433 rang	es and 3 met	tadata	columns:		
seqn	ames	ranges str	and	type	ID	Name
<	{le> <	IRanges> <	Rle>	<factor></factor>	<character></character>	<character></character>
<pre>[1] ptg000</pre>	001l 5	286-9436	+	mRNA	Sdiv_ptg000001l_0001-R	Sdiv_ptg000001l_0001-R
[2] ptg000	001l 111	41-11320	+	mRNA	Sdiv_ptg000001l_0003-R	Sdiv_ptg000001l_0003-R
[3] ptg000	001l 188	62-20472	+	mRNA	Sdiv_ptg000001l_0004-R	Sdiv_ptg000001l_0004-R
[4] ptg000	001l 329	18-33824	+	mRNA	Sdiv_ptg000001l_0007-R	Sdiv_ptg000001l_0007-R
[5] ptg000	001l 341	23-34566	+	mRNA	Sdiv_ptg000001l_0008-R	Sdiv_ptg000001l_0008-R

An important R object class: GRanges

- The "GRanges" class is used for storing genomic data
 - Both .bed and .gff files can be represented as Granges
 - Excellent set operations, overlaps, etc.
 - Powerful but can be painful

> cpg								
GRanges	obje	ect with	7218137	ranges a	and 2	metadata	a columns:	
		seqnar	nes	r.	anges	strand	score	coverage
		<r< th=""><th>le></th><th><ira< th=""><th>nges></th><th><rle></rle></th><th><numeric></numeric></th><th><integer></integer></th></ira<></th></r<>	le>	<ira< th=""><th>nges></th><th><rle></rle></th><th><numeric></numeric></th><th><integer></integer></th></ira<>	nges>	<rle></rle>	<numeric></numeric>	<integer></integer>
	[1]	ptg00000	91l	4568	-4569	*	93.7	35
	[2]	ptg00000	01l	4635	-4636	*	94.8	35
	[3]	ptg00000	01l	4641	-4642	*	94.3	35
	[4]	ptg00000	01l	4695	-4696	*	73.2	35
	[5]	ptg00000	01l	4720	-4721	*	95.1	35

Basic Outline

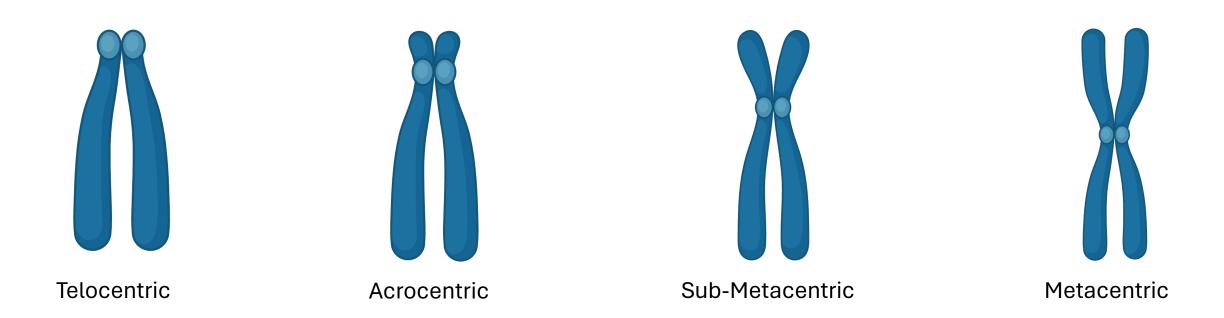

1. Map Hifi Reads back to the genome assembly (you have already done this)

2. Get methylation percentage for each `CG` site in the genome. (you or I have already done this)

3. Load the data into R.

4. Use R to summarize and analyze the methylation data.

What are centromeres?

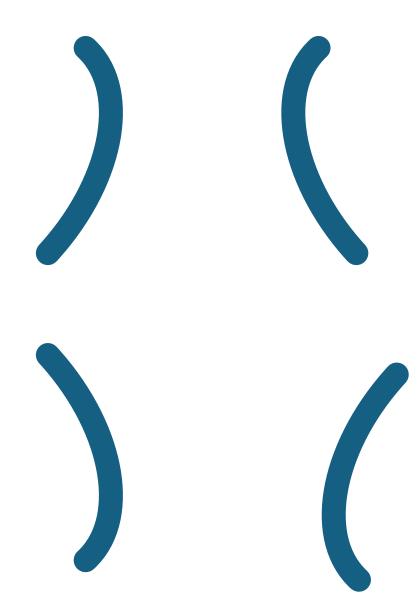

They are where the spindle fibers attach during mitosis and meiosis

They are what give chromosomes their characteristic X shape

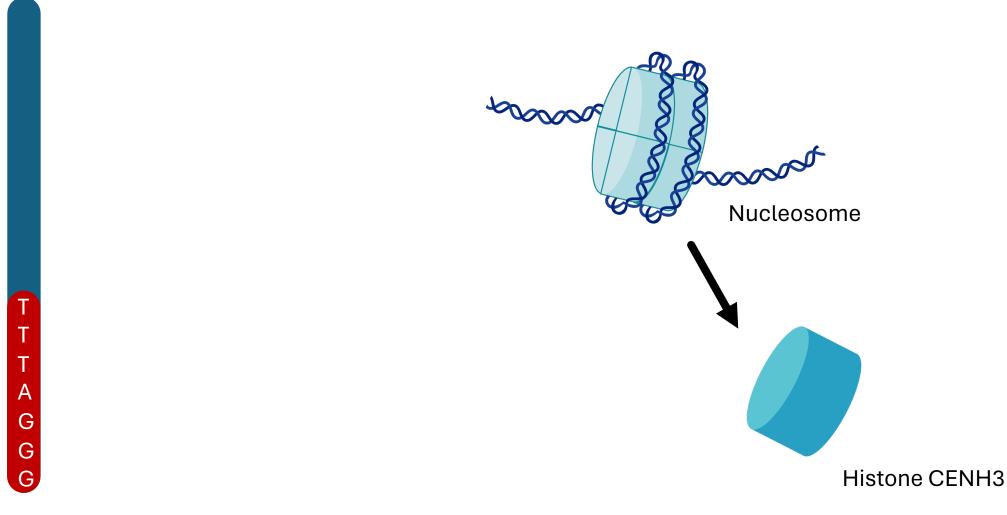
AATTGGTTAATTGGTTAATTGGTTAATTGGTTAATTGGTT

A lot like telomeres, centromeres are composed of repetitive sequences

Types of centromeres



Dicentric chromosome issues



In Anaphase

chromosomes fragment

How have we detected centromeres?

Telomere sequence is very conserved

Centromeres are epigenetically conserved

Why is it so challenging to detect them bioinformatically?

G

Centromere repeats are not conserved and much longer

G

The centromeric sequence can vary within a genus

The centromeric sequence can vary between chromosomes

G

How are we going to approach centromere detection today?

New Results

A Follow this preprint

RepeatOBserver: tandem repeat visualization and centromere detection

© Cassandra Elphinstone, Rob Elphinstone, D Marco Todesco, D Loren Rieseberg doi: https://doi.org/10.1101/2023.12.30.573697

This article is a preprint and has not been certified by peer review [what does this mean?].

Looking for regions of low sequence diversity. AKA regions with a lot of repeats

Unfortunately this takes a long time. We have run this for you and you will access the data