## Conceptual overview: Principal Components Analysis (PCA)

Julin Maloof
Updated April 22, 2020

## Principal Components Analysis

## motivation

- Often a data set consists of many different variables.
- Principal Components Analysis (PCA) provides a way to focus on the most important aspects of the data.
- Just as the name says, PCA determines the Principal Components of the data set.


## Principal components in genomics

One major use of PCA in genomics is to simplify complex SNP data sets.
Consider a simple data set of two markers, M1 (A/G) and M2 (C/T). We can make a graphical representation of these markers by assigning numeric values to each genotype at each marker.

## Principal components in genomics

We can plot each individual's genotypes on a 2D scatter plot:

| M1 | M2 |
| :--- | :--- |
| AA: 0 | CC: 0 |
| AG: 1 | CT: 1 |
| GG: 2 | TT: 2 |
| note: points are "jittered" as a visual <br> aid. |  |



## Principal components in genomics

PCA identifies the vector through the data that contains the largest proportion of variance (i.e. the largest spread of data).

Where would you draw such a line here?


## Principal components in genomics

This vector represents the first principal component (PC1) and the contains the largest variance in the data:


## Principal components in genomics

In this data set the second principal component contains no information.
Thus principal components has simplified a 2D data set to a single dimension.


## Principal components in genomics

Consider a new marker, M3:


## Principal components in genomics

Where are the first and second principal components here?


## Principal components in genomics

Where are the first and second principal components here?


## Principal components in genomics

We can rotate the data to align the plot with the principal components

## original data

CC- ACT
rotated


Now we have a single axis that represents the majority of the variation in the data, and a second axis that accounts for the remainder.

## Three SNPs-First View

What if there are 3 SNPs?
first view
Now we have 3 dimensions
In this view it appears that most of the variance in along a single vector.


## Three SNPs-live 3D view


demo live rotation of data cube

## Three SNPs-Second View

Changing rotation alters our interpretation of the data.

Now we see that we could draw 2
principal components that each would capture a fair bit of variance


## Three SNPs-Third View

Changing rotation alters our interpretation of the data.

This rotation shows a third axis of variation.


## PCA analysis of 3 SNPs



What do these PCs represent?

## PCA analysis of 3 SNPs



How much variation is explained by each PC?
percent variance explained


PC1 and PC2 capture almost all of the variance. We have converted our 3D data set into a 2D data set

## PCA: many dimensions

- As you have seen in these examples, each SNP column can be considered a dimension of data.
- In the Li et al. paper there are 650,000 SNPs = 650,000 dimensions!
- By applying PCA the data is partioned such that the most informative aspects are represnted in the first PCs


## PCA Summary

- Genomics data is typically highly dimensional.
- There is often redundancy in the data.
- PCA allows rotation and rescaling of the data so that we can focus on a smaller set of variables that contain the majority of the information.
- PCA enables 2D visualization of multi-dimensional datasets (for example by plotting the first and second PCs against one another).


## PCA vs MDS

A related technique is multi-dimensional scaling (MDS).

- In PCA the final number of components is the same as the starting number of dimensions, but the information has been shifted towards a fewer number of dimensions.
- In MDS the data is rescaled and rotated to project it into a fixed number of dimensions (typically 2 ).


## MDS

Determines the optimal projection to display the data in 2D

## poor rotation


good rotation


